

Curr. Res. Interdiscip. Stud. 3(3):50-56, 2024. DOI: 10.58614/cris333

## **Current Research in Interdisciplinary Studies**

Journal: https://www.jpub.org/journal-details.php?journal-id=40



Research Article

# Constructing optimal fourth and eighth order iterative methods by using variant of Newton's method

Kalyanasundaram Madhu 101\*

#### **Article Info**

**Keywords:** Non-linear equation, Multi-point iterations, Optimal order, Kung-Traub conjecture

2010 AMS: 65H05 · 65D05

Received: 17 May 2024; Accepted: 12 August 2024; Published: 29 August 2024

© 2024 by the author's. The terms and conditions of the Creative Commons Attribution (CC BY) license apply to this open access article.

## Abstract

In this paper, we have presented an optimal fourth order iterative method and an optimal eighth order iterative method without memory using weight functions. In terms of computational point of view, our first method require three evaluations (two function and one first derivatives) per iteration to get fourth order and the second method require four evaluations (three functions and one derivatives) per iteration to get eighth order. Hence, these methods have high efficiency indices 1.587 and 1.682 respectively. Some numerical examples are tested to know the performance of the new methods which verifies the theoretical results.

## 1. Introduction

It is known that a wide class of problems which arise in boundary value problems in Kinetic theory of gases, elasticity and other applied areas are mostly reduced to single variable nonlinear equations. One of the best root-finding methods for solving nonlinear scalar equation f(x) = 0 is Newton's iteration method. The local order of convergence of Newton's method is two and it is optimal with two function evaluations per iterative step. In recent years, numerous higher order iterative methods have been developed and analyzed for solving nonlinear equations that improve classical methods such as Newton's, Chebyshev, Chebyshev-Halley's, etc. As the order of convergence increases, so does the number of function evaluations per step. Hence, a new index to determine the efficiency called "Efficiency Index" (EI) is introduced in [9] to measure the balance between these quantities. Kung-Traub [5] conjectured that the order of convergence of any multi-point without memory method with d function evaluations cannot exceed the bound  $2^{d-1}$ , the optimal order. Thus the optimal order for three evaluations per iteration would be four, four evaluations per iteration would be eight and so on.

Recently, some fourth and eighth order optimal I.F.s have been developed using weight functions (see [1, 2, 3, 6, 7, 8, 10, 12, 13, 15, 16, 19] and references therein). In [4, 14, 17, 18], third order method has been presented using the idea of mean and Newton iterations. In this paper, we have improved the order of the method to four (optimal) by using variants of third order Newton's method. Further, we have developed a family of eighth (optimal) order method using weight functions. In Section 2, some definitions are included which are required for our study and present the development of the new methods. Section 3 discusses the convergence analysis using MATHEMATICA. Section 4 presents few numerical examples and compare the results of the present methods with Newton's method and few optimal methods. Finally, section 5 gives conclusions on the present work.

<sup>&</sup>lt;sup>1</sup>Research Department, ZenToks, Dharmapuri - 635202, Tamilnadu, India.

 $<sup>^</sup>st$ Corresponding author: dr.kmadhu@zentoks.org

## 2. Development of the methods

If the sequence  $\{x_n\}$  tends to a limit  $x^*$  in such a way that

$$\lim_{n\to\infty}\frac{x_{n+1}-x^*}{(x_n-x^*)^p}=C$$

for  $p \ge 1$ , then the order of convergence of the sequence is said to be p, and C is known as the asymptotic error constant. If p = 1, p = 2 or p = 3, the convergence is said to be linear, quadratic or cubic, respectively. Let  $e_n = x_n - x^*$ , then the relation

$$e_{n+1} = C e_n^p + O(e_n^{p+1}) = O(e_n^p).$$
 (1)

is called the error equation. The value of p is called the order of convergence of the method. [9] The Efficiency Index is given by

$$EI = p^{\frac{1}{d}},\tag{2}$$

where d is the total number of new function evaluations (the values of f and its derivatives) per iteration. Let  $x_{n+1} = \psi(x_n)$  define an Iterative Function (I.F.). Let  $x_{n+1}$  be determined by new information at  $x_n, \phi_1(x_n), ..., \phi_i(x_n), i \ge 1$ . No old information is reused. Thus,

$$x_{n+1} = \psi(x_n, \phi_1(x_n), ..., \phi_i(x_n)).$$
 (3)

Then  $\psi$  is called a multipoint I.F. without memory.

#### **Kung-Traub Conjecture** [5]

Let  $\psi$  be an I.F. without memory with d evaluations. Then

$$p(\psi) \le p_{Opt} = 2^{d-1},\tag{4}$$

where  $p_{opt}$  is the maximum order.

The Newton (also called Newton-Raphson) I.F. (2<sup>nd</sup>NR) is given by

$$\Psi_{2^{nd}NR}(x) = x - u(x), u(x) = \frac{f(x)}{f'(x)}.$$
(5)

The  $2^{nd}NR$  I.F. is one-point I.F. with two function evaluations and it satisfies the Kung-Traub conjecture with d=2. Further,  $EI_{2^{nd}NR}=1.414$ . A family of third-order I.F. based on power means  $(3^{rd}PM)$  considered by Xiaojian [18] is given by

$$\psi_{3^{rd}PM}(x) = x - \frac{f(x)}{D(x,\beta)}, \quad D(x,\beta) = sign(f'(x)) \left(\frac{f'(x)^{\beta} + (f'(x-u(x)))^{\beta}}{2}\right)^{\frac{1}{\beta}}.$$
 (6)

The cases  $\beta = 1, -1, 2$  correspond to arithmetic mean  $(3^{rd}AM)$ , harmonic mean  $(3^{rd}HM)$  and square mean  $(3^{rd}SM)$  respectively. For the case  $\beta = 0$ , we consider  $\beta \longrightarrow 0$  which is the geometric mean  $(3^{rd}GM)$  with

 $D(x,0) = sign(f'(x))\sqrt{f'(x)f'(x-u(x))} \text{ since } \lim_{\beta \longrightarrow 0} \left(\frac{f'(x)^{\beta} + (f'(x-u(x)))^{\beta}}{2}\right)^{\frac{1}{\beta}} = \sqrt{f'(x)f'(x-u(x))}. \text{ Let us consider the following third order method for the value of } \beta = 1 \text{ in (6) (see [17]):}$ 

$$\psi_{3^{rd}AM}(x) = x - \frac{2f(x)}{f'(x) + f'(\psi_{2^{nd}NR}(x))}.$$
(7)

For  $\beta = -1$  in (6) (see [4]):

$$\psi_{3^{rd}HM}(x) = x - \frac{f(x)}{2} \left( \frac{1}{f'(x)} + \frac{1}{f'(\psi_{2^{rd}NR}(x))} \right). \tag{8}$$

Also, consider Newton-Steffensen (NS) method with cubic convergence [14]

$$\psi_{3^{rd}NS}(x) = x - \frac{f(x)^2}{f'(x)[f(x) - f(\psi_{2^{nd}NR}(x))]}.$$
(9)

The family of methods (6) and (9) are of order three with three evaluations per full iteration having EI = 1.442. From literature survey, we observe that these methods (7), (8) and (9) are approximate equal interns of convergence order and EI. By equating these methods we can improve optimal fourth order method without weight functions as follows. By equating (7) and (8), we have

$$f'(\psi_{2^{nd}NR}(x)) \approx \frac{f'(x)^2}{2f'(x) - f'(\psi_{2^{nd}NR}(x))}.$$
 (10)

Also, by equating (8) and (9), we have

$$f'(\psi_{2^{nd}NR}(x)) \approx \frac{f'(x)[f(x) - f(\psi_{2^{nd}NR}(x))]}{f(x) + f(\psi_{2^{nd}NR}(x))}$$
(11)

Now, equating (10) and (11), we have

$$f'(\psi_{2^{nd}NR}(x)) \approx \frac{f'(x)[f(x) - 3f(\psi_{2^{nd}NR}(x))]}{f(x) - f(\psi_{2^{nd}NR}(x))}$$
(12)

Equation (12) Substitute in (7), then we obtain new fourth-order I.F. as follows:

$$\psi_{4^{th}KM}(x) = x - \frac{f(x)}{f'(x)} \left[ \frac{f(x) - f(\psi_{2^{nd}NR}(x))}{f(x) - 2f(\psi_{2^{nd}NR}(x))} \right]$$
(13)

The efficiency of the proposed method (13) has improved where EI = 1.587 and this method known as Ostrowski's method [9]. Further, a family of optimal eighth order method from  $4^{th}KM$  is proposed with 4 function evaluations using weight function. Let us consider new family of optimal eighth order method as follows:

$$\psi_{8^{th}KM}(x) = \psi_{4^{th}KM}(x) - \frac{f(\psi_{4^{th}KM}(x))(\psi_{4^{th}KM}(x) - \psi_{2^{nd}NR}(x))}{f(\psi_{4^{th}KM}(x)) - f(\psi_{2^{nd}NR}(x))}(G(\eta) \times H(\tau)), \tag{14}$$

where  $G(\eta)$  and  $H(\tau)$  are weight functions and expanding about 0, that should be chosen in order to obtain the eighth-order of convergence and  $\eta = \frac{f(\psi_{4^{th}KM}(x))}{f(x)}$  and  $\tau = \frac{f(\psi_{2^{td}NR}(x))}{f(x)}$ .

Next section, we analyze the convergence proof of the proposed family (14) with help of MATHEMATICA software.

## 3. Convergence Analysis

Let  $f: D \subset \mathbb{R} \to \mathbb{R}$  be a sufficiently smooth function having a simple root  $x^*$  in the open interval D, then the proposed family of I.F.  $8^{th}KM$  (14) is eighth order convergence when G(0) = 1, G'(0) = 2, H(0) = 1, H'(0) = 0, H''(0) = 2 and H'''(0) = 12, being in this case the error equation

$$\Psi_{8^{th}KM}(x) = \alpha + c_2^2(c_2^2 - c_3)(7c_2^3 - 4c_2c_3 + c_4)e_n^8 + O(e_n^9)$$

where  $c_q = \frac{f^{(q)}(x^*)}{q! f'(x^*)}, q \ge 2$ .

*Proof.* Let  $e_n = x - \alpha$ .

Using the Taylor series and we have

$$f(x) = f'(\alpha)[e_n + c_2 e_n^2 + c_3 e_n^3 + c_4 e_n^4 + c_5 e_n^5 + c_6 e_n^6 + c_7 e_n^7 + \dots]$$
(15)

and

$$f'(x) = f'(\alpha)[1 + 2c_2e_n + 3c_3e_n^2 + 4c_4e_n^3 + 5c_5e_n^4 + 6c_6e_n^5 + 7c_7e_n^6 + \dots]$$
(16)

where  $c_q = \frac{f^{(q)}(x^*)}{q!f'(x^*)}, q \ge 2$ . Now

$$\psi_{2^{nd}NR}(x) = \alpha + c_2 e_n^2 - 2(c_2^2 - c_3)e_n^3 + (4c_2^3 - 7c_2c_3 + 3c_4)e_n^4 + (-8c_2^4 + 20c_2^2c_3 - 6c_3^2 - 10c_2c_4 + 4c_5)e_n^5 \\
+ (16c_2^5 - 52c_2^3c_3 + 33c_2c_3^2 + 28c_2^2c_4 - 17c_3c_4 - 13c_2c_5 + 5c_6)e_n^6 + \dots$$
(17)

Expanding  $f(\psi_{2^{nd}NR}(x))$  about  $\alpha$  and taking into account (17), we have

$$f(\psi_{2^{nd}NR}(x)) = f'(\alpha)[c_2e_n^2 - 2(c_2^2 - c_3)e_n^3 + (5c_2^3 - 7c_2c_3 + 3c_4)e_n^4 - 2(6c_2^4 - 12c_2^2c_3 + 3c_3^2 + 5c_2c_4 - 2c_5)e_n^5 + (28c_2^5 - 73c_2^3c_3 + 34c_2^2c_4 - 17c_3c_4 + c_2(37c_3^2 - 13c_5) + 5c_6)e_n^6 + \dots]$$
(18)

Using eqs. (15), (16) and (18) into (13), we obtain

$$\psi_{4^{jh}KM}(x) = \alpha + (c_2^3 - c_2c_3)e_n^4 - 2(2c_2^4 - 4c_2^2c_3 + c_2^3 + c_2c_4)e_n^5 + (10c_2^5 - 30c_2^3c_3 + 18c_2c_3^2 + 12c_2^2c_4 - 7c_3c_4 - 3c_2c_5)e_n^6 - 2(10c_2^6 - 40c_2^4c_3 - 6c_3^3 + 20c_2^3c_4 + 3c_4^2 + 8c_2^2(5c_3^2 - c_5) + 5c_3c_5 + c_2(-26c_3c_4 + 2c_6))e_n^7 + (36c_2^7 - 178c_2^5c_3 + 101c_2^4c_4 + 50c_3^2c_4 + 3c_2^3(84c_3^2 - 17c_5) - 17c_4c_513c_3c_6 + c_2^2(-209c_3c_4 + 20c_6) + c_2(-91c_3^3 + 37c_4^2 + 68c_3c_5 - 5c_7))e_n^8 + \dots$$

$$(19)$$

Expanding  $f(\psi_{4^{th}KM}(x))$  about  $\alpha$  and taking into account (19), we have

$$f(\psi_{4'^hKM}(x)) = f'(\alpha) \left[ (c_2^3 - c_2c_3)e_n^4 - 2(2c_2^4 - 4c_2^2c_3 + c_3^2 + c_2c_4)e_n^5 + (10c_2^5 - 30c_2^3c_3 + 18c_2c_3^2 + 12c_2^2c_4 - 7c_3c_4 - 3c_2c_5)e_n^6 - 2(10c_2^6 - 40c_2^4c_3 - 6c_3^3 + 20c_2^3c_4 + 3c_4^2 + 8c_2^2(5c_3^2 - c_5) + 5c_3c_5 + c_2(-26c_3c_4 + 2c_6))e_n^7 + (37c_2^7 - 180c_2^5c_3 + 101c_2^4c_4 + 50c_3^2c_4 + c_2^3(253c_3^2 - 51c_5) - 17c_4c_5 - 13c_3c_6 + c_2^2(-209c_3c_4 + 20c_6) + c_2(-91c_3^3 + 37c_4^2 + 68c_3c_5 - 5c_7))e_n^8 + \dots \right]$$

$$(20)$$

Using equations (17)-(20) into (14), we obtained

$$\begin{split} &\psi_{8^{\prime\prime\prime}KM}(x) = \alpha - c_2(c_2^2 - c_3) \left( -1 + G(0)H(0) \right) e_n^4 + \left( 2c_3^2(-1 + G(0)H(0)) + 2c_2c_4(-1 + G(0)H(0)) \right. \\ &\quad + c_2^4(-4 + 4G(0)H(0) - G(0)H'(0)) + c_2^2c_3(8 + G(0)(-8H(0) + H'(0))) \right) e_n^5 \\ &\quad + \left( 7c_3c_4(-1 + G(0)H(0)) + 2c_2^2c_4(6 + G(0)(-6H(0) + H'(0))) + c_2(3c_5(-1 + G(0)H(0)) \right. \\ &\quad + c_3^2(18 - 18G(0)H(0) + 4G(0)H'(0))) + c_2^5(10 + G(0)(-9H(0) + 7H'(0) - \frac{H''(0)}{2})) \\ &\quad + \frac{1}{2}c_3^2c_3(-60 + G(0)(58H(0) - 26H'(0) + H''(0))) \right) e_n^6 + \left( 2(3c_4^2(-1 + G(0)H(0)) + 5c_3c_5(-1 + G(0)H(0)) + c_3^3(6 - 6G(0)H(0) + 2G(0)H'(0))) + c_2(4c_6(-1 + G(0)H(0)) + 2c_3c_4(26 - 26G(0)H(0) + 7G(0)H'(0))) + c_2^3c_4(-40 + G(0)(38H(0) - 21H'(0) + H''(0))) + c_2^2(c_5(16 - 16G(0)H(0) + 3G(0)H'(0)) + c_3^2(-80 + 76G(0)H(0) - G'(0)H(0) - 50G(0)H'(0) + 3G(0)H''(0)) + c_2^6(-20 - G'(0)H(0) + G(0)(14H(0) - 29H'(0) + 5H''(0) + H'''(0)) \right) e_n^7 \\ &\quad + \frac{1}{6}c_2^4c_3(12(40 + G'(0)H(0)) + G(0)(-408H(0) + 474H'(0) - 54H''(0) + H'''(0))) \right) e_n^7 \\ &\quad + \frac{1}{6}\left(102c_4c_5(-1 + G(0)H(0)) + 78c_3c_6(-1 + G(0)H(0)) + 60c_3^2c_4(5 - 5G(0)H(0) + 2G(0)H'(0)) + 6c_2(5c_7(-1 + G(0)H(0)) + 4c_3c_5(17 - 17G(0)H(0) + 5G(0)H'(0)) + c_4^2(37 - 37G(0)H(0) + 12G(0)H'(0)) + c_3^3(-91 - 4G'(0)H(0) + G(0)(87H(0) - 76H'(0) + 6H''(0))) \right) e_n^7 \\ &\quad + G(0)(390H(0) - 310H'(0) + 21H''(0))) + c_2^5c_3(-12(89 + 13G'(0)H(0) - G'(0)H'(0)) + G(0)(690H(0) - 2004H'(0) + 450H''(0) - 23H'''(0))) + 2c_2^4c_4(303 + 12G'(0)H(0) + G(0)(690H(0) - 2004H'(0) + 450H''(0) - 23H'''(0))) + 2c_2^4c_3(30 + 12G'(0)H(0) + G(0)(-15H(0) + 93H'(0) - 45H''(0) + H''''(0))) + c_3^2(3c_5(-102 + G(0)(96H(0) - 58H'(0) + 3H''(0)) + 2c_3^2(756 + 63G'(0)H(0) - 3G'(0)H'(0) + 6c_2^2(36 + 9G'(0)H(0) - G'(0)H'(0) + G(0)(-624H(0) + 98H'(0) - 147H''(0) + 4H'''(0)))) e_n^8 + \dots \end{split}$$

By choice of G(0) = 1, G'(0) = 2, H(0) = 1, H'(0) = 0, H''(0) = 2 and H'''(0) = 12 in above equation. We have, finally

$$\Psi_{8^{th}KM}(x) = \alpha + c_2^2(c_2^2 - c_3)(7c_2^3 - 4c_2c_3 + c_4)e_n^8 + O(e_n^9)$$
(21)

which proves the proposed family (14) convergent with order eight.

By some conditions on the weight function have been imposed to assure the desired order of convergence. This gives us the possibility of designing different schemes depending on the  $|H^{(k)}(0)| < \infty, k = 4, 5...$  used, as for example

$$G(\eta) = 1 + 2\eta$$
,  $H(\tau) = 1 + \tau^2 + 2\tau^3$ .

or

$$G(\eta) = 1 + 2\eta$$
,  $H(\tau) = 1 + \tau^2 + 2\tau^3 + \tau^4$ .

or

$$G(\eta) = 1 + 2\eta$$
,  $H(\tau) = 1 + \tau^2 + 2\tau^3 + \tau^4 + \tau^5$ .

We use the first one in the rest of the manuscript, denoting the resulting scheme by  $8^{th}KM$ . Thus, proposed family of I.F. (14) is optimal eighth order and its efficiency has improved EI = 1.682.

### 4. Numerical examples

In this section, numerical results on some test functions are compared for the new methods  $4^{th}KM$  and  $8^{th}KM$  with some existing eighth order methods and  $2^{nd}NR$ . Numerical computations have been carried out in the MATLAB software with 500 significant digits. Depending on the precision of the computer, we have used the stopping criteria for the iterative process either  $|f(x_N)| < \varepsilon$  or  $error = |x_N - x_{N-1}| < \varepsilon$  where  $\varepsilon = 10^{-50}$  and N is the number of iterations required for convergence. The computational order of convergence is given by

$$\rho = \frac{\ln|(x_N - x_{N-1})/(x_{N-1} - x_{N-2})|}{\ln|(x_{N-1} - x_{N-2})/(x_{N-2} - x_{N-3})|}.$$

We consider the following iterative methods for solving scalar nonlinear equations for the purpose of comparison: Liu-Wang Method (8<sup>th</sup>LWM) [6]:

$$y = x - \frac{f(x)}{f'(x)}, z = y - \frac{f(x)}{f(x) - 2f(y)} \frac{f(y)}{f'(x)},$$

$$\psi_{8^{th}LWM}(x) = z - \frac{f(z)}{f'(x)} \left( \left( \frac{f(x) - f(y)}{f(x) - 2f(y)} \right)^2 + \frac{f(z)}{f(y) - f(z)} + \frac{4f(z)}{f(x) + f(z)} \right).$$
(22)

Petkovic-Neta-Petkovic-Dzunic Method (8<sup>th</sup>PNPDM) [11]:

$$y = x - \frac{f(x)}{f'(x)}, z = x - \left( \left( \frac{f(y)}{f(x)} \right)^2 - \frac{f(x)}{f(y) - f(x)} \right) \frac{f(x)}{f'(x)},$$

$$\psi_{8^{th}PNPDM}(x) = z - \frac{f(z)}{f'(x)} \left( \varphi(t) + \frac{f(z)}{f(y) - f(z)} + \frac{4f(z)}{f(x)} \right),$$

$$where \ \varphi(t) = 1 + 2t + 2t^2 - t^3 \ and \ t = \frac{f(y)}{f(x)}.$$
(23)

Sharma-Arora Method (8<sup>th</sup>SAM) [13]:

$$y = x - \frac{f(x)}{f'(x)}, z = y - \left(3 - 2\frac{f[y, x]}{f'(x)}\right) \frac{f(y)}{f'(x)},$$

$$\psi_{g_{fh}SAM}(x) = z - \frac{f(z)}{f'(x)} \left(\frac{f'(x) - f[y, x] + f[z, y]}{2f[z, y] - f[z, x]}\right).$$
(24)

The following test functions and their simple zeros for our study are given below:

$$f_1(x) = \sin(2\cos x) - 1 - x^2 + e^{\sin(x^3)}, \qquad x^* = -0.7848959876612125352...$$

$$f_2(x) = xe^{x^2} - \sin^2 x + 3\cos x + 5, \qquad x^* = -1.2076478271309189270...$$

$$f_3(x) = x^3 + 4x^2 - 10, \qquad x^* = 1.3652300134140968457...$$

$$f_4(x) = \sin(x) + \cos(x) + x, \qquad x^* = -0.4566247045676308244...$$

$$f_5(x) = \frac{x}{2} - \sin x, \qquad x^* = 1.8954942670339809471...$$

$$f_6(x) = (x+2)e^x - 1, \qquad x^* = -0.4428544010023885831...$$

$$f_7(x) = x^2 + \sin(\frac{x}{5}) - \frac{1}{4}, \qquad x^* = 0.4099920179891371316...$$

Table 1 shows the corresponding results for  $f_1(x)$  to  $f_7(x)$ . If the initial points are very close to the root, then we obtain least number of iterations and lowest error. Hence, the present new method  $8^{th}KM$  has better efficiency as compared to  $2^{nd}NR$ ,  $4^{th}KM$ ,  $8^{th}LWM$ ,  $8^{th}PNPDM$ ,  $8^{th}SAM$ . Specifically when consider the function  $f_3(x)$ ,  $x_0 = 0.5$ ,  $8^{th}PNPDM$ ,  $8^{th}SAM$  methods are converges badly.

## 5. Conclusion

In this work, we have proposed a family of optimal three-point eighth order methods using weight functions. It is clear that our proposed new family of methods require only four evaluations per iterative step to obtain eighth order method. To illustrate the proposed new methods and to check the validity of the theoretical results we have tabulated numerical results. The performance is compared with Newton's method and some recently developed methods and proposed method is to be superior over some existing methods.

## **Article Information**

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this research.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the authors.

Plagiarism Statement: This article was scanned by the plagiarism program.

**Ethical Approval and Participant Consent:** It is declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies benefited from are stated in the bibliography.

#### References

- [1] S. Abdullah, N. Choubey, and S. Dara. Optimal fourth- and eighth-order iterative methods for solving nonlinear equations with basins of attraction. *J. Appl. Math. Comput.*, 70:3477–3507, 2024.
- [2] D.K.R. Babajee, Kalyanasundaram Madhu, and J. Jayaraman. A family of higher order multi-point iterative methods based on power mean for solving nonlinear equations. *Afr. Mat.*, 27(5):865–876, 2016.

 Table 1: Numerical results for test functions

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f(x)                  | Methods            | N   | error    | ρ    | cpu(s)    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|-----|----------|------|-----------|
| $\begin{array}{c} A^{th}KM & 4 & 6.0e-067 & 3.99 & 0.490021 \\ 8^{th}LWM & 3 & 4.5e-059 & 7.91 & 0.519256 \\ 8^{th}PNPDM & 3 & 8.8e-056 & 7.87 & 0.492658 \\ 8^{th}SAM & 3 & 3.4e-060 & 7.88 & 0.482706 \\ 8^{th}KM & 3 & 1.0e-062 & 7.91 & 0.482377 \\ \hline \\ f_2(x),x_0=-1.7 & 2^{nd}NR & 9 & 4.3e-054 & 1.99 & 0.648932 \\ 4^{th}KM & 5 & 4.4e-093 & 4.00 & 0.602758 \\ 8^{th}LWM & 4 & 2.3e-125 & 8.00 & 0.624357 \\ 8^{th}PNPDM & 4 & 1.0e-057 & 7.97 & 0.615154 \\ 8^{th}SAM & 4 & 8.3e-121 & 7.99 & 0.604853 \\ \hline \\ f_3(x),x_0=0.5 & 2^{nd}NR & 9 & 5.3e-058 & 1.99 & 0.543270 \\ 4^{th}KM & 5 & 1.1e-068 & 3.99 & 0.534235 \\ 8^{th}LWM & 5 & 1.3e-098 & 7.99 & 0.591683 \\ 8^{th}PNPDM & 19 & 7.1e-114 & 7.99 & 1.557381 \\ 8^{th}SAM & 342 & 5.3e-148 & 8.00 & 31.346577 \\ 8^{th}KM & 5 & 8.9e-203 & 7.99 & 0.504825 \\ \hline \\ f_4(x),x_0=-0.2 & 2^{nd}NR & 7 & 6.8e-096 & 1.99 & 0.500082 \\ 4^{th}KM & 3 & 1.0e-068 & 8.08 & 0.464638 \\ 8^{th}PNPDM & 3 & 3.5e-067 & 8.10 & 0.455332 \\ 8^{th}SAM & 3 & 2.1e-073 & 8.08 & 0.419979 \\ \hline \\ f_5(x),x_0=1.6 & 2^{nd}NR & 8 & 6.8e-087 & 1.99 & 0.599717 \\ 4^{th}KM & 5 & 2.5e-168 & 4.00 & 0.457531 \\ 8^{th}LWM & 4 & 1.5e-242 & 7.99 & 0.484437 \\ 8^{th}SAM & 3 & 3.1e-066 & 9.00 & 0.496179 \\ 8^{th}SMM & 4 & 3.1e-215 & 8.00 & 0.486276 \\ 8^{th}SMM & 4 & 3.7e-183 & 8.00 & 0.496179 \\ 8^{th}KM & 4 & 1.5e-242 & 7.99 & 0.474353 \\ \hline f_6(x),x_0=-0.3 & 2^{nd}NR & 7 & 7.7e-066 & 1.99 & 0.477958 \\ 8^{th}LWM & 4 & 1.5e-074 & 3.99 & 0.477945 \\ 8^{th}LWM & 3 & 3.5e-067 & 7.94 & 0.433124 \\ 8^{th}SMM & 4 & 3.5e-056 & 7.93 & 0.412904 \\ 8^{th}KM & 4 & 4.1e-074 & 3.99 & 0.427945 \\ 8^{th}LWM & 3 & 3.5e-056 & 7.93 & 0.412904 \\ 8^{th}LWM & 3 & 3.5e-056 & 7.93 & 0.412904 \\ 8^{th}KM & 4 & 4.1e-074 & 3.99 & 0.477353 \\ 8^{th}PNPDM & 3 & 3.5e-056 & 7.93 & 0.412904 \\ 8^{th}KM & 5 & 7.4e-151 & 3.99 & 0.477343 \\ 8^{th}PNPDM & 4 & 1.5e-074 & 8.02 & 0.487462 \\ 8^{th}LWM & 4 & 1.9e-202 & 7.99 & 0.475347 \\ 8^{th}PNPDM & 4 & 1.5e-074 & 8.02 & 0.48706 \\ 8^{th}PNPDM & 4 & 1.5e-074 & 8.02 & 0.48706 \\ 8^{th}SAM & 4 & 2.5e-128 & 8.00 & 0.479096 \\ \hline \end{array}$ |                       |                    |     |          |      |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $f_1(x), x_0 = 0.5$   |                    |     |          |      |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                    |     |          |      |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                    |     |          |      |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                    |     |          |      |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                    |     |          |      |           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $f_2(x)$ $x_0 = -1.7$ |                    |     |          |      |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $J_2(x), x_0 = 1.7$   |                    |     |          |      |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                    |     |          |      |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                    | -   |          |      |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                    | -   |          |      |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                    | 4   |          |      |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $f_3(x), x_0 = 0.5$   |                    |     |          |      |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33(-7)-0              | $4^{th}KM$         | 5   | 1.1e-068 | 3.99 | 0.534235  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                    |     | 1.3e-098 | 7.99 | 0.591683  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | $8^{th}PNPDM$      |     | 7.1e-114 | 7.99 | 1.557381  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | $8^{th}SAM$        | 342 | 5.3e-148 | 8.00 | 31.346577 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | $8^{th}KM$         | 5   | 8.9e-203 | 7.99 | 0.504832  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $f_4(x), x_0 = -0.2$  | $2^{nd}NR$         |     | 6.8e-096 |      | 0.500082  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.( )/ 0              | $4^{th}KM$         | 4   | 1.1e-076 | 3.99 | 0.415800  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | $8^{th}LWM$        | 3   | 1.0e-068 | 8.08 | 0.464638  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | $8^{th}PNPDM$      | 3   | 3.5e-067 | 8.10 | 0.455332  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | $8^{th}SAM$        | 3   | 8.0e-069 | 8.06 | 0.421791  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | $8^{th}KM$         | 3   | 2.1e-073 | 8.08 | 0.419979  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $f_5(x), x_0 = 1.6$   | $2^{nd}NR$         | 8   | 6.8e-087 | 1.99 | 0.595717  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                    | 5   | 2.5e-168 | 4.00 | 0.457531  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                    | 4   | 1.5e-242 | 7.99 | 0.484437  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                    | 4   | 3.1e-215 | 8.00 | 0.486276  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                    | 4   | 3.7e-183 | 8.00 | 0.496179  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                    | 4   | 6.6e-250 | 7.99 | 0.474353  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $f_6(x), x_0 = -0.3$  |                    | 7   | 7.7e-066 | 1.99 | 0.477958  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                    |     | 4.1e-074 | 3.99 | 0.427945  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                    |     |          |      |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | _                  |     |          |      |           |
| $f_7(x), x_0 = 0.2$ $2^{nd}NR$ 8 $8.2e-076$ $2.00$ $0.601464$ $4^{th}KM$ 5 $7.4e-151$ $3.99$ $0.476424$ $8^{th}LWM$ 4 $1.9e-202$ $7.99$ $0.475347$ $8^{th}PNPDM$ 4 $1.5e-074$ $8.02$ $0.487462$ $8^{th}SAM$ 4 $2.5e-128$ $8.00$ $0.479096$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                    |     |          |      |           |
| 4th KM       5       7.4e-151       3.99       0.476424         8th LWM       4       1.9e-202       7.99       0.475347         8th PNPDM       4       1.5e-074       8.02       0.487462         8th SAM       4       2.5e-128       8.00       0.479096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                    |     |          |      |           |
| 8 <sup>th</sup> LWM       4       1.9e-202       7.99       0.475347         8 <sup>th</sup> PNPDM       4       1.5e-074       8.02       0.487462         8 <sup>th</sup> SAM       4       2.5e-128       8.00       0.479096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $f_7(x), x_0 = 0.2$   |                    |     |          |      |           |
| 8 <sup>th</sup> PNPDM 4 1.5e-074 8.02 0.487462<br>8 <sup>th</sup> SAM 4 2.5e-128 8.00 0.479096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                    |     |          |      |           |
| 8 <sup>th</sup> SAM 4 2.5e-128 8.00 0.479096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                    |     |          |      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                    | -   |          |      |           |
| 8 <sup>th</sup> KM 4 4.5e-205 7.99 0.467054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                    |     |          |      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | 8 <sup>in</sup> KM | 4   | 4.5e-205 | 7.99 | 0.467054  |

- [3] Alicia Cordero, Miguel A. Leonardo Sepúlveda, and Juan R. Torregrosa. Dynamics and stability on a family of optimal fourth-order iterative methods. *Algorithms*, 15(10), 2022.
- [4] H H H Homeier. On Newton-type methods with cubic convergence. J. Comp. Appl. Math., 176:425-432, 2005.
- [5] H T Kung and J F Traub. Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Mach., 21(4):643-651, 1974.
- [6] L Liu and X Wang. Eighth-order methods with high efficiency index for solving nonlinear equations. Appl. Math. Comp., 215:3449–3454, 2010.
- [7] K. Madhu. New higher order iterative methods for solving nonlinear equations and their basins of attraction. *Current Research in Interdisciplinary Studies*, 2:1–15, 2023.
- [8] Kalyanasundaram Madhu and J. Jayaraman. Higher order methods for nonlinear equations and their basins of attraction. *Mathematics*, 4(22), 2016.
- [9] A M Ostrowski. Solutions of Equations and System of equations. Academic Press, New York, 1960.
- [10] S. Panday, A. Sharma, and G. Thangkhenpau. Optimal fourth and eighth-order iterative methods for non-linear equations. *J. Appl. Math. Comput.*, 69:953–971, 2023.
- [11] M S Petkovic, B Neta, L D Petkovic, and J Dzunic. Multipoint Methods for Solving Nonlinear Equations. Elsevier, 2012.
- [12] Obadah Said Solaiman, Samsul Ariffin Abdul Karim, and Ishak Hashim. Optimal fourth- and eighth-order of convergence derivative-free modifications of king's method. *Journal of King Saud University Science*, 31(4):1499–1504, 2019.
- [13] J R Sharma and H Arora. An efficient family of weighted-newton methods with optimal eighth order convergence. *Appl. Math. Lett.*, 29:1–6, 2014.
- [14] J.R. Sharma. A composite third order newton-steffensen method for solving nonlinear equations. Appl. Math. Comput, 169:242–246, 2005.
- [15] X. Wang and J. Li. Higher order multi-point iterative methods for finding gps user position. *Current Research in Interdisciplinary Studies*, 1:27–35, 2022.
- [16] X. Wang and J. Li. Two step optimal jarratt-type fourth order methods using two weight functions for solving nonlinear equations. *Current Research in Interdisciplinary Studies*, 1:20–26, 2022.
- [17] S Weerakoon and T G I Fernando. A variant of Newton's method with accelerated third order convergence. *Appl. Math. Lett.*, 13:87–93, 2000.
- [18] Z Xiaojian. A class of newton's methods with third-order convergence. Appl. Math. Lett., 20:1026 1030, 2011.
- [19] Ahmet Yaşar Özban and Bahar Kaya. A new family of optimal fourth-order iterative methods for nonlinear equations. *Results in Control and Optimization*, 8:100157, 2022.